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Abstract

We study optimal growth and its decentralization in an overlapping gener-

ations model. The decentralization of an optimal path needs some specific

taxes in addition to lump-sum transfers if there are externalities. The intro-

duction of market of permits allows to neutralize the external environmental

effects. We show that there is a unique management of permits such that the

equilibrium coincides with the optimal path: all permits should be auctioned

i.e. no permits to firms. This conclusion is in contradiction with the usual

practice of grandfathering.
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Sciences Economiques, avenue Olivier Messiaen, 72085 cedex 9. Tel.: (33) (0)243 833 125

, Fax.: (33) (0) 243 833 117, pierre-andre.jouvet@univ-lemans.fr

1



1 Introduction

Optimal growth problem with pollution is well known and has been analyzed

in many contributions. Two main approaches are used when dealing with

the effects of pollution on economic growth. The first consists to study

the classical Ramsey problem in searching for the existence of a balanced

growth of the “golden rule” type accommodating pollution. The second

one focuses on the growth path’s characteristics in a decentralized economy,

where pollution is an externality.

The first approach starts with the seminal paper of Keeler, Spence and

Zeckhauser (1971), followed, among others, by Forster (1973) or Gruver

(1976). More recents papers discuss some joint problems, introducing natu-

ral resources (Forster, 1980 ; Tahvonen, 1991) or abatement activities (van

der Ploeg and Withagen, 1991).

The second approach is illustrated by Smith (1972) or Tahvonen and

Kuuluvainen (1991) who study conditions under which the market solution

is the optimal solution of the social planner. But an open question is the use

of the market of permits to decentralize the optimal path.

Tradeable quota system have also been much studied in the literature.

Montgomery (1972) shows that in a competitive market of permits, cost-

effectiveness is achieved regardless of the initial allocation. Tietenberg (1985)

gives the conceptual basis for dynamic permit trading. More recent studies

extend his results. In Tietenberg’s formulation, a cumulative abatement

target is given for the entire time horizon, inter-period trading being implicit

in his analysis. Cronshaw and Kruse (1996) and Rubin (1996) analyzes

borrowing and banking over the time horizon. They show than inter-temporal
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trading enables polluting firms to jointly minimize their abatement costs over

time. Stevens and Jones (2002) generalize this result by incorporating explicit

constraints on permit trading and shows that the decentralized behavior of

firms leads to the least-cost solution attainable under joint-cost minimization.

It has also been used considering optimization by short-lived governments

(Ono, 2002).

In this paper, we use the market of permits for decentralizing the optimal

growth path. In the optimal growth problem for the standard overlapping

generations model (Diamond, 1984), lump-sum transfers are sufficient for de-

centralization (this results from the second welfare theorem). In the presence

of externalities, proportional taxes should be used in order to neutralize the

external effects (see for example Jouvet, Michel, Vidal (2000)).

Does the market of permits allows to neutralize the external effect of

environment, given that the total number of permits is chosen by the gov-

ernment ? But the allocation of permits is also a policy choice, and we will

show that the unique allocation decentralizing the optimal path consists to

give no permits to firms, because any permit given to a firm modifies the

income of the shareholders and thus the interest rate. We shall show that

the market of permits is efficient not only in a static equilibrium, but also in

a dynamic one2. Our main result is that this use of the market of permits

with lump-sum transfers allows to decentralize the optimal growth path.

The paper is set out as follows. Section 2 presents the model. The optimal

growth problem is stated in section 3 where we characterized the marginal

2For the static approach, the allocation conditions are less restrictive (see Jouvet,

Michel, Rotillon, (2003)).
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optimality conditions. Section 4 define the equilibrium with pollution permits

and our main result is proved in section 5. We summarize our results in

section 6.

2 The model

2.1 Technologies

Potential output F (Kt, Lt) occurs within a period according to a constant

returns to scale production function using capital, Kt, and labor, Lt. The

effective output is given by:

Yt = ztF (Kt, Lt) (1)

where zt is the index of technology used, 0 ≤ zt ≤ 1 (see Stokey 1998).

The ratio of pollution, Pt, on potential output is a continuous differentiable,

increasing, convex function ϕ(zt) satisfying ϕ(0) = 0,

Pt

F (Kt, Lt)
= ϕ(zt) (2)

Note that eliminating zt between (1) and (2) leads to a standard production

function homogeneous of degree on of capital, labor and pollution (Turner,

Pearce and Bateman(1994)).
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2.2 Dynamic

The dynamic of the stock of pollution at time t, St, is defined by St =

(1−h)St−1 +Pt where Pt is the current pollution flow and h the natural level

of pollution absorption, 0 ≤ h ≤ 1. The environmental quality, Qt, is defined

by the difference, Qt = Q−St where Q represents the environmental quality

without pollution. Therefore, the environmental quality dynamic is given by

Qt = hQ + (1− h)Qt−1 − Pt (3)

The macroeconomic equilibrium implies that total production is equal to

the sum of total consumption, Ct and total investment, It:

Yt = Ct + It (4)

The dynamic of the stock of capital is given by

Kt+1 = (1− δ)Kt + It (5)

where δ is the rate of depreciation for capital, 0 ≤ δ ≤ 1 .

2.3 Consumers

Individuals live two periods. Population is constant, N identical agents are

born at each period t. Any agent born in period t derives utility from the

consumption, ct, leisure, 1−lt with 0 ≤ lt ≤ 1, and the quality of environment,

Qt, in her/his first period of life and from the consumption, dt+1, and the

quality of environment, Qt+1, in second period of life.
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The agent’s preferences are represented by a general utility function

Ut = U(ct, 1− lt, Qt, dt+1, Qt+1) (6)

The function U(.) is strictly concave, increasing, twice continuously dif-

ferentiable and satisfies the Inada conditions (infinite marginal utility of zero

consumption).

3 Optimal growth

3.1 The problem

From relations (1), (4), (5) and with Ct = Nct + Ndt and Lt = Nlt the

resource constraint is

ztF (Kt, Nlt) = Nct + Ndt + Kt+1 − (1− δ)Kt (7)

and per young this relation is

ztF (kt, lt) = ct + dt + kt+1 − (1− δ)kt (8)

where kt = Kt/N is the capital per young.

With (2) and (3), the dynamics of environmental quality are

Qt = hQ + (1− h)Qt−1 − ϕ(zt)NF (kt, lt) , ∀t ≥ 0 (9)

The objective of the central planner is to maximize the welfare of agents,
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with a discount factor, γ, 0 < γ < 1,

+∞∑
t=−1

γtUt (10)

The initials values of capital and environment quality are given, respectively

k0 and Q−1. In addition the past variables c−1 and l−1 are given.3

3.2 Optimality conditions

The central planner chooses the level of consumptions, (ct, dt), the level of

labor supply, lt, and the index of technology used, zt. The stock variables are

capital and environmental quality. Denoting by λt+1 and µt respectively the

Lagrangiean multiplier of the resources constraint (8) and the environmental

quality dynamic (9), the Lagrangiean is defined by

γ−1U−1 +
+∞∑
t=0

γt





Ut + λt+1 [ztF (kt, lt)− ct − dt − kt+1 + (1− δ)kt]

+µt

[
hQ + (1− h)Qt−1 − ϕ(zt)NF (kt, lt)−Qt

]




(11)

One obtains thereby the first order conditions,

- for the first period consumption

∂Ut

∂ct

= λt+1 (12)

- for the second period consumption

3Only if the life cycle utility is additively separable, the past consumption of good and

leisure do not matter.
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∂Ut−1

∂dt

= γλt+1 (13)

- for leisure

∂Ut

∂(1− lt)
= [λt+1zt − µtNϕ(zt)] FL(kt, lt) (14)

- and for the index of technology used,

λt+1 − µtNϕ′(zt) ≤ 0 ; = 0 if zt < 1 (15)

The dynamics of the shadow prices, λt+1 and µt are obtained by differen-

tiating the Lagragiean with respect to kt+1 and Qt, ∀t ≥ 0

λt+1 = γλt+2 [zt+1FK(kt+1, lt+1) + (1− δ)]− γµt+1Nϕ(zt+1)FK(kt+1, lt+1)

(16)

µt = γµt+1(1− h) +
∂Ut

∂Qt

+
1

γ

∂Ut−1

∂Qt

(17)

The tranversality condition is (Michel (1990))

lim
t→+∞

γt (λtkt + µt−1Qt−1) = 0 (18)
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3.3 Characterization of the marginal optimality con-

ditions

We characterize the first order conditions, in the case where there is under-use

of potential output at each period, zt < 1, ∀t. We obtain,

Nµt =
λt+1

ϕ′(zt)
(19)

After eliminating the shadow prices for physical capital and for environmental

quality and rearranging the terms, we explicit the different trade-offs faced

by the central planner.

- Trade-off between generations

∂Ut−1

∂dt

= γ
∂Ut

∂ct

(20)

- Trade-off between consumption and leisure

∂Ut

∂(1− lt)
=

∂Ut

∂ct

ψ(zt)FL(kt, lt) (21)

where ψ(zt) = zt − ϕ(zt)/ϕ
′(zt) satisfies ψ(zt) > 0.4

4The strictly convex function ϕ satisfies for any z > 0:

ϕ(z)− ϕ(0) < zϕ′(z)
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- Trade-off between consumptions on life cycle (resulting from (16))

∂Ut

∂ct

=
∂Ut

∂dt+1

[ψ(zt+1)FK(kt+1, lt+1) + (1− δ)] (22)

- Trade-off between “environmental quality and consumptions” (resulting

from (17))

N

ϕ′(zt)

∂Ut

∂ct

=
1− h

ϕ′(zt+1)
γN

∂Ut+1

∂ct+1

+
∂Ut

∂Qt

+
1

γ

∂Ut−1

∂Qt

(23)

This last trade-off is obtained by substitution of Nµt = λt+1/ϕ
′(zt) = ∂Ut

∂ct
/ϕ′(zt)

in the equation of the environmental quality shadow price (17). In this equa-

tion, an increase of one unit of environmental quality at period t, is equal to

the sum of direct utility effect at period t, ∂Ut

∂Qt
+ 1

γ
∂Ut−1

∂Qt
and the welfare effect

resulting from the inherited (1 − h) unit of environmental quality of period

t + 1 discounted in t, γ(1− h)µt+1.

Conversely, the trade-off conditions (20), (21), (22) and (23), imply the

first order conditions (12) to (17) with the values of the shadow prices λt+1

and µt defined by (12) and (19).

4 Equilibrium with pollution permits

In the economy with a market of tradeable permits of pollution, the govern-

ment policy consists of issuing a quantity of permits, P t, allocating permits

to firms P
F

t , and the difference, P t−P
F

t , is auctioned. It also makes a trans-

fers, τt, to the young agent and θt to each old agent. Its budget is balanced

at each period t. The price on the pollution permits market is denoted qt.
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4.1 Consumers

Consumers take the environmental quality as given. At the first period of

life, the young agent supplies,lt, unit of labor, 0 ≤ lt ≤ 1, earns wtlt where

wt is the wage per unit of labor, and receives a transfer τt which may be

positive or negative. (S)he consumes, ct, and saves, st. Then, the first period

budget constraint is

wtlt + τt = ct + st (24)

When (s)he is old, at the second period of life, (s)he is retired and receives a

transfer θt+1 in addition of the return to her/his savings , Rt+1st with Rt+1

the growth interest rate. The old agent consumes all her/his income. Then,

the second period budget constraint is

dt+1 = Rt+1st + θt+1 (25)

The agent maximizes utility (6) by choosing consumptions and leisure subject

to the budget constraints (24) and (25). Since prices and environmental

qualities, Qt and Qt+1, are given, the first order conditions are:

∂Ut

∂(1− lt)
= wt

∂Ut

∂ct

(26)

and
∂Ut

∂ct

= Rt+1
∂Ut

∂dt+1

(27)

The relation (26) corresponds to the trade-off between consumption and

leisure and relation (27) corresponds to the trade-off between consumptions

on life cycle.
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4.2 Firms

Firms are perfectly competitive. We consider a representative firm endowed

with a stock of capital Kt and a stock of permits P
F

t . The firm takes prices, wt

and qt as given and maximizes profits with respect to the index of technology

used, zt, labor Lt and the quantity of permits, Pt, as defined by the relation

(2), Pt = ϕ(zt)F (Kt, Lt).

The net revenue5 includes the net gains on the permit market i.e.

Yt − wtLt − qt(Pt − P
F

t ) (28)

Hence, using equations (1) and (2), the problem the firm is

max
0≤zt≤1,Lt≥0

[zt − qtϕ(zt)] F (Kt, Lt)− wtLt + qtP
F

t = πt (29)

The profits πt are the net revenue distributed to shareholder, the owners

of the capital stock.

Assuming 1/ϕ′(1) < qt < 1/ϕ′(0), the first order conditions, for an inte-

rior solution (zt < 1) are

ϕ′(zt) =
1

qt

⇒ zt = ϕ′−1(1/qt) ≡ z(qt) (30)

and

wt = m(qt)FL(Kt, Lt) (31)

where m(qt) = z(qt)− qtϕ(z(qt)), according to the price qt of permits.

5This net revenue is similar to the gross operating surplus defined by Hahn and Solow

(1995), p 71.
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Therefore, profits per unit of capital are

πt

Kt

= m(qt)FK(Kt, Lt) + qt
P

F

t

Kt

= Rt − 1 + δ (32)

By definition the return to savings, Rt, is equal to πt/Kt + 1 − δ. Note

that, in general, this return does not satisfy the neo-classical property of

equality of factor income with marginal productivity (see Jouvet, Michel and

Rotillon (2003)).

4.3 Equilibrium

The government budget is balanced, i.e. satisfied,

Nτt + Nθt = qt(P t − P
F

t ) (33)

The intertemporal equilibrium is defined, for a given sequence of govern-

ment decisions, by a sequence of prices, individual variables and aggregate

variables satisfying all the equilibrium conditions. The government decisions

satisfies its budget constraint. Consumers decisions maximize their utility.

Firms decision maximize profit.

The capital stock is equal to savings and the return to savings is defined

by profit per unit of capital.

The markets of labor, permits and good clear.

In addition, the dynamic equation of environmental quality holds.

The first old consumption satisfies:

d0 = R0s−1 + θ0 (34)
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and the initial capital stock K0 = Ns−1 is given.

We explicitly define the equilibrium of the economy as follows:

Definition 1 For a given policy (P t, P
F

t , τt, θt)t≥0, an equilibrium is defined

by

- sequence of prices (qt, wt, Rt)t≥0,

- sequence of individuals variables (ct, lt, st, dt+1) satisfying relations (24)

to (27) and d0 satisfies (34),

- sequence of aggregate variables (Kt, Lt, Qt, zt) satisfying (30), (31).

such that the following equilibrium conditions hold:

- the government budget is balanced, (33),

- the capital stock Kt+1 = Nkt+1 is equal to savings Nst and satisfies

(32),

- the market of labor, permits and good clear:

Lt = Nlt,

Pt = ϕ(zt)F (Kt, Lt) = P t

Yt = ztF (Kt, Nlt) = Nct + Ndt + Kt+1 − (1− δ)Kt

- the dynamic of environmental quality is defined by relation (3) .

5 Decentralization of the optimal growth

In the standard overlapping generation model (without environmental con-

straint) the optimal policy is decentralized with lump-sum transfers ( see for

example De La Croix and Michel (2003)). In our model, we shall show that
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the decentralization not only implies a given policy of permits, P t, but zero

permits attributed to firms, P
F

t = 0. The benefice of the government on

permits market allows to finance the lump-sum transfers to consumers.

We consider an optimal growth path c∗t , l
∗
t , d

∗
t , k

∗
t , z

∗
t , Q

∗
t .

Proposition 2 Consider a social optimum satisfying z∗t < 1,∀t. Any equi-

librium which coincides with the social optimum satisfies, ∀t ≥ 0,

zt = z∗t

P
F

t+1 = 0

and

m(qt) = ψ(z∗t ).

Proof. Let us note

TMS(c∗t , d
∗
t+1) =

∂Ut

∂ct

∂Ut

∂dt+1

(c∗t , 1− l∗t , d
∗
t+1)

and

TMS(1− l∗t , c
∗
t ) =

∂Ut

∂(1−lt)

∂Ut

∂ct

(c∗t , 1− l∗t , d
∗
t+1)

Given Q−1 and K0, by induction the equality of labor (Lt = L∗t ), production

(Yt = Y ∗
t ) and emissions (Qt = Q∗

t ) implies, zt = z∗t , qt = 1/ϕ′(z∗t ) > 0

and Kt = K∗
t . The equilibrium coinciding with the social optimum satisfies

equations (21) and (22). This implies by eliminating ψ(z∗t+1)

TMS(c∗t , d
∗
t+1) = 1− δ + TMS(1− l∗t+1, c

∗
t+1)

FK(k∗t+1, l
∗
t+1)

FL(k∗t+1, l
∗
t+1)
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At the equilibrium, from relation (32)

Rt+1 = m(qt+1)FK(k∗t+1, l
∗
t+1) + qt+1

P
F

t+1

Kt+1

+ 1− δ

Relation (26) and (31) imply

∂Ut+1

∂(1− lt+1)
= m(qt+1)FL(k∗t+1, l

∗
t+1)

∂Ut+1

∂ct+1

and with (27)

Rt+1 = TMS(c∗t , d
∗
t+1)

then,

qt+1

P
F

t+1

Kt+1

= Rt+1 −m(qt+1)FK(k∗t+1, l
∗
t+1)− (1− δ)

= TMS(c∗t , d
∗
t+1)− TMS(1− l∗t+1, c

∗
t+1)

FK(k∗t+1, l
∗
t+1)

FL(k∗t+1, l
∗
t+1)

− (1− δ) = 0

Thus, since qt+1 > 0, P
F

t+1 = 0.

In addition, we have

TMS(c∗t , d
∗
t+1) = m(qt+1)FK(k∗t+1, l

∗
t+1)+(1−δ) = ψ(z∗t+1)FK(k∗t+1, l

∗
t+1)+(1−δ)

then m(qt+1) = ψ(z∗t+1).

At t = 0, we have at the optimum,

TMS(1− l∗0, c
∗
0) = ψ(z∗0)FL(k0, l

∗
0)
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at the equilibrium

TMS(1− l∗0, c
∗
0) = w0 = m(q0)FL(k0, l

∗
0)

thus m(q0) = ψ(z∗0).

Remark, at t = 0, given the initial capital stock hold by the first old and

their past consumption and labor supply, any transfer to the firms (say by

permits) can be neutralized by lump-sum tax to old. There is no condition

on P
F

0 .

We can now show that the social optimum, satisfying under-use of poten-

tial output at each period, can be decentralized as an intertemporal equilib-

rium with no free permits to firms and lump-sum transfers.

Proposition 3 The optimal path (c∗t , l
∗
t , d

∗
t , k

∗
t , z

∗
t , Q

∗
t )t≥0 satisfying z∗t < 1,

∀t ≥ 0, is an equilibrium with

P t = P
∗
t = ϕ(z∗t )NF (k∗t , l

∗
t ), P

F

t = 0 and qt = 1/ϕ′(z∗t )

τt = c∗t + k∗t+1 − wtl
∗
t and wt = ψ(z∗t )FL(k∗t , l

∗
t )

θt = d∗t −Rtk
∗
t and Rt = ψ(z∗t )FK(k∗t , l

∗
t ) + 1− δ

Proof. The consumer’s optimality conditions (26) and (27) (trade-off be-

tween consumption and leisure and decision-making between consumptions

on life cycle) are verified with the prices wt and Rt. The consumer’s budget

constraints hold by definition of the lump-sum transfers, τt and θt. With

qt = 1/ϕ′(z∗t ), we have m(qt) = ψ(z∗t ) and the conditions (30) and (31) and

(32) hold with πt/Kt = m(qt)FK(k∗t , l
∗
t ) since P

F

t = 0. The constraint of re-

sources, (8) holds at the optimum. It remains to verify the government bud-

get constraint, (33). This constraint results from the constraints of resources,
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the consumer’s budget constraints and the relation,wtl
∗
t − [Rt − (1− δ)]k∗t =

z∗t F (k∗t , l
∗
t )− qtP

∗
t /N , satisfied by the equilibrium prices.

Remark, at the equilibrium with P
F

t = 0 the return to capital and sav-

ings is equal to the marginal productivity of capital plus 1 − δ (the capital

remanding after depreciation).

6 Conclusion

We have shown that it is possible to decentralize optimal growth path only

with lump-sum transfers and a market of permits. But a necessary condition

to realize such a decentralization is to allocate no permits to firms, at the

difference with the practices like grandfathering. The reason of this property

of optimal decentralization is that the equilibrium market of permits gives

the optimal rate of interest.

A consequence of this property is that at the decentralized equilibrium the

interest rate is equal to the marginal productivity of capital.

Note that if at the equilibrium the income of the government auctioning

the permits allows to make positive transfers to all consumers, these transfers

could be made in the form of direct distribution of permits to the consumers.

In our study, we have not consider public expenditure for pollution abate-

ment. The optimal growth would then include an optimal pollution abate-

ment policy. Given this policy, the way of decentralization would be un-

changed.
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